247 research outputs found

    Invasive Plants Are a Valuable Alternate Protein Source and Can Contribute to Meeting Climate Change Targets

    Get PDF
    This work was funded by the Scottish Government through RESAS as part of its strategic research programme. We would like to thank William Rees and Teresa Grohmann for their time in helping with preparation of the manuscript. Jacqueline Wallace (Rowett Institute) and Robin Walker (SRUC) for providing plant samples. Donna Henderson and Jodie Park for technical assistance in NSP measurements. Susan Anderson for technical assistance in amino acid profiling. Gary Duncan and Lorraine Scobbie for technical assistance in phenolic profiling. Lisa Guerrier, Salomé Leveque (IUT- Clermont-Ferrand, France), who assisted and observed procedures as part of their lab-skill training. We would also like to thank Graham Horgan (BIOSS, Rowett Institute) for advise on the statistical analysis. We would like to thank the NHS for its incredible commitment to keeping us safe during these harsh times.Peer reviewedPublisher PD

    Sapogenol is a major microbial metabolite in human plasma associated with high protein soy-based diets : the relevance for functional food formulations

    Get PDF
    Funding: This work was supported by The Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS). Acknowledgments: The authors are grateful to the ALPROℱ Foundation for supporting this work. Author Contributions: Conceptualization, A.M.J. and W.R.R.; methodology, M.N., Y.B., S.H.D., G.J.D., J.S.C.; data curation, M.N.; V.R.; writing—original draft preparation, M.N.; writing—review and editing, M.N.; V.R., W.R.R. All authors have read and agreed to the published version of the manuscript.Peer reviewedPublisher PD

    Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes

    Get PDF
    Acknowledgements The Rowett Institute of Nutrition and Health (University of Aberdeen) receives financial support from the Scottish Government Rural and Environmental Sciences and Analytical Services (RESAS). POS is a PhD student supported by the Scottish Government (RESAS) and the Science Foundation Ireland, through a centre award to the APC Microbiome Institute, Cork, Ireland. Data Summary The high-quality draft genomes generated in this work were deposited at the European Nucleotide Archive under the following accession numbers: 1. Eubacterium rectale T1-815; CVRQ01000001–CVRQ0100 0090: http://www.ebi.ac.uk/ena/data/view/PRJEB9320 2. Roseburia faecis M72/1; CVRR01000001–CVRR010001 01: http://www.ebi.ac.uk/ena/data/view/PRJEB9321 3. Roseburia inulinivorans L1-83; CVRS01000001–CVRS0 100 0151: http://www.ebi.ac.uk/ena/data/view/PRJEB9322Peer reviewedPublisher PD

    Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid

    Get PDF
    This article is protected by copyright. All rights reserved. Acknowledgements: The authors acknowledge support from the Scottish Government Food Land and People programme (RESAS). We would like to thank Lorraine Scobbie and Gary Duncan for technical support. Funding for JP, AWW and 454 pyrosequencing was provided by the Wellcome Trust (grant number 098051).Peer reviewedPublisher PD

    Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

    Get PDF
    ACKNOWLEDGMENTS We acknowledge support from BBSRC grant no. BB/L009951/1, from the Scottish government Food, Land and People program, and from the Society for Applied Microbiology. E.A.B. is supported by a grant (no. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel, and by a grant from the United States-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of the Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry. Thanks are due to Fergus Nicol for proteomic analysis and to Auriane Bernard for enzyme assays on stationary-phase cultures. We also thank Julian Parkhill and Keith Turner (Wellcome Trust Sanger Institute, Cambridge, United Kingdom) for making the R. bromii L2-63 genome sequence available for analysis.Peer reviewedPublisher PD

    Ruminococcal cellulosome systems from rumen to human

    Get PDF
    This article is protected by copyright. All rights reserved. The authors appreciate the kind assistance of Miriam Lerner (ImmunArray Ltd. Company, Rehovot, Israel) with experiments involving the MicroGrid II arrayer. This research was supported by a grant (No. 1349) to EAB also from the Israel Science Foundation (ISF) and a grant (No. 24/11) issued to RL by The Sidney E. Frank Foundation also through the ISF. Additional support was obtained from the establishment of an Israeli Center of Research Excellence (I-CORE Center No. 152/11) managed by the Israel Science Foundation, from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) and the Helmsley Foundation. The authors also appreciate the support of the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530 and an ERA-IB Consortium (EIB.12.022), acronym FiberFuel. HF and SHD acknowledge support from the Scottish Government Food Land and People programme and from BBSRC grant no. BB/L009951/1. In addition, EAB is grateful for a grant from the F. Warren Hellman Grant for Alternative Energy Research in Israel in support of alternative energy research in Israel administered by the Israel Strategic Alternative Energy Foundation (I-SAEF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic ChemistryPeer reviewedPostprin

    Rates of production and utilisation of lactate by microbial communities from the human colon

    Get PDF
    13 pĂĄginas, 7 tablas, 3 figuras.Lactate metabolism was studied in mixed bacterial communities using single-stage continuous flow fermentors inoculated with faecal slurries from four different volunteers and run for 6 days at pH 5.5 and 6.0, using carbohydrates, mainly starch, as substrates. A continuous infusion of [U-13C]starch and l-[3-13C]lactate was performed on day 5 and a bolus injection of l-[3-13C]lactate plus dl-lactate on day 6. Short-chain fatty acids and lactate concentrations plus enrichments and numbers of lactate-producing and -utilizing bacteria on day 5 were measured. Faecal samples were also collected weekly over a 3-month period to inoculate 24-h batch culture incubation at pH 5.9 and 6.5 with carbohydrates alone or with 35 mmol L-1 lactate. In the fermentors, the potential lactate disposal rates were more than double the formation rates, and lactate concentrations usually remained below detection. Lactate formation was greater (P < 0.05) at the lower pH, with a similar tendency for utilization. Up to 20% of butyrate production was derived from lactate. In batch cultures, lactate was also efficiently used at both pH values, especially at 6.5, although volunteer and temporal variability existed. Under healthy gut environmental conditions, bacterial lactate disposal seems to exceed production markedly.The Rowett Research Institute and Biomathematics and Statistics Scotland are supported by the Scottish Executive Environment and Rural Affairs Department. A. Belenguer received financial support from Spanish Ministry of Education and Science
    • 

    corecore